Inverting Sinh x

To find  
\[sinh^{-1}x\]
  let  
\[y=sinhx=\frac{e^x-e^{-x}}{2}\]
  the multiplying by  
\[2e^x\]
 gives
\[2e^xy=e^{2x}-1 \rightarrow 2y(e^x)-e^{2x}+1=0 \rightarrow e^{2x}-2ye^x-1=0\]

This is a quadratic equation in  
\[e^x\]
.
\[e^x= \frac{2y \pm \sqrt{(-2y)^2- 4 \times 1 \times -1}}{2} = y \pm \sqrt{y^2+1}\]
.
Hence  
\[x= ln(y \pm \sqrt{y^2+1})= ln(y \pm \sqrt{y^2+1})\]
.
Only the positive square root will return a valid value since the negative root will result in having to take the natural log of a negative number, which is impossible, so  
\[x= ln(y + \sqrt{y^2+1})\]
.
Then  
\[sinh^{-1}x= ln(x + \sqrt{x^2+1})\]
.