Table of Particular Solutions

The general solution of the equation  
\[A \frac{d^2y}{dt^2}+B \frac{dy}{dt}+Cy=f(t)\]
  is the sum of two parts.
\[y_c\]
, called the complementary solution, is the solution to the homogeneous equation  
\[A \frac{d^2y}{dt^2}+B \frac{dy}{dt}+Cy=0\]
.
\[y_p\]
, called the particular solution, is any solution to the non homogeneous equation  
\[A \frac{d^2y}{dt^2}+B \frac{dy}{dt}+Cy=f(t)\]
.
The particular solution must be matched to the function  
\[f(t)\]
. The table gives some examples.
\[f(t)\]
\[y_p\]
A B
\[2+5\]
  t (or polynomial of degree n)
\[A+Bt\]
  (or polynomial of degree n)
\[D e^{\omega t}, \; \omega \neq \frac{-B \pm \sqrt{B^2-4AC}}{2A}\]
\[Ee^{ \omega t}\]
\[A e^{\omega t}, \; \omega = \frac{-B \pm \sqrt{B^2-4AC}}{2A}\]
\[(C_1+C_2t)e^{ \omega t}\]
\[Dsin \omega t, \; \omega \neq \frac{-B \pm \sqrt{B^2-4AC}}{2A}\]
\[Esin \omega t +F cos \omega t\]
\[Dcos \omega t, \; \omega \neq \frac{-B \pm \sqrt{B^2-4AC}}{2A}\]
\[Esin \omega t +F cos \omega t\]
\[Dsin \omega t, \; \omega = \frac{-B \pm \sqrt{B^2-4AC}}{2A}\]
\[e^{\omega t}(Esin \omega t +F cos \omega t )\]
\[Dcos \omega t, \; \omega = \frac{-B \pm \sqrt{B^2-4AC}}{2A}\]
\[e^{\omega t}(Esin \omega t +F cos \omega t )\]