Associating Multilinear With Alternating Forms

Let  
\[V\]
  be a vector space over a field  
\[F\]
, let  
\[r\]
  be a positive integer.and let  
\[L\]
  be a multilinear function (linear in each argument)  
\[L:V^r \rightarrow F\]
.
\[L\]
  is an alternating form if  
\[L=0\]
  whenever two arguments are the same, and  
\[L\]
  changes sign if conservative arguments are interchanged.
Let  
\[L\]
  be an r - linear form on  
\[V\]
  and let  
\[\sigma\]
  be a permutation of  
\[1, \; 2,..., \; r\]
  - there are  
\[n!\]
  such permutations). If  
\[L\]
  is alternating the sign of  
\[L\]
  is defined by the number of transpositions of  
\[1, \; 2,..., \; r\]
  needed to return the set to the natural order. Suppose that numbers  
\[1, \; 2,..., \; r\]
  are rearranged as  
\[a_1, \; a_2,..., \; a_r\]
  then
\[L(\alpha_1 , \; \alpha_2 , \;..., \; \alpha_r)=(-1)^{e_{a_1a_2...a_r}}L(\alpha_{a1} , \; \alpha_{a_2} , \;..., \; \alpha_{a_r})\]

where  
\[e_{a_1a_2...a_r}\]
  is the number of transitions needed to return the set  
\[a_1, \; a_2,..., \; a_r\]
  to the natural order.
Write  
\[(-1)^{e_{a_1a_2...a_r}}=sgn( \sigma )\]
  then
\[L(\alpha_1 , \; \alpha_2 , \;..., \; \alpha_r)=sgn( \sigma )L(\alpha_{a1} , \; \alpha_{a_2} , \;..., \; \alpha_{a_r})\]

The set of all multilinear functions forms a subspace  
\[M^r(V)\]
. For each  
\[L \in M^r\]
  define  
\[\prod_{\sigma } L \in M^r(V)\]
  as  
\[\prod_{\sigma } L= \sum_{\sigma} sgn(\sigma ) L\]
.
\[\prod_{\sigma } L\]
  is a linear transformation from  
\[M^r(V)\]
  onto  
\[A^r(V)\]
  - the set of alternating r forms on  
\[V\]
.

You have no rights to post comments