Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0002 360552 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0687 1209264 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0687 1209264 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1833 4041536 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1847 4068936 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1855 4086648 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1857 4117680 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1868 4140400 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1868 4140400 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2353 4853616 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2391 5045768 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2396 5066696 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2532 5334824 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2532 5335080 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182 Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; JCommentsACL has a deprecated constructor in /var/www/astarmathsandphysics/components/com_jcomments/classes/acl.php on line 17 Call Stack: 0.0002 360552 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0687 1209264 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0687 1209264 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1833 4041536 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1847 4068936 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1855 4086648 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1857 4117680 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1868 4140400 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1868 4140400 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2353 4853616 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2391 5045768 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2396 5066696 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.5443 13761648 13. JEventDispatcher->trigger() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:199 0.5445 13762048 14. plgContentJComments->update() /var/www/astarmathsandphysics/libraries/joomla/event/dispatcher.php:160 0.5445 13762048 15. plgContentJComments->onContentAfterDisplay() /var/www/astarmathsandphysics/libraries/joomla/event/event.php:70 0.5447 13770296 16. plgContentJComments->onAfterDisplayContent() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:339 0.5449 13772032 17. JComments::show() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:282 0.5456 13805080 18. JCommentsFactory::getACL() /var/www/astarmathsandphysics/components/com_jcomments/jcomments.php:188 0.5456 13805480 19. spl_autoload_call() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274 0.5457 13805560 20. JLoader::load() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274

The Bolzano Weierstrass Theorem

We need first a definition

Definition Letbe a set of real numbers. A real numberis an accumulation point ofif and only if every neighbourhood of contains infinitely many points of

For example 0 is an accumulation point of the setsincecontains allforNote the accumulation point need not belong to the set.

The Bolzano Weierstrass Theorem

Every bounded infinite set of numbers has at least one accumulation point.

Proof: Letbe a bounded infinite set. Sinceis bounded, there are real numbersand %beta such thatIfis the midpoint of this interval, then at least one of the sets must contain an infinite number of members ofChoose one with this property and call itIfis the midpoint of this interval, then at least one of the setsmust contain an infinite set of members ofChoose one with this property and call itContinuing in this fashion we obtain for each positive integera closed intervalwith the following properties:

  1. contains infinitely many points of

Sincefor allthe setis bounded. Letis the desired accumulation point. We need to show that every neighbourhood ofcontains infinitely many points ofLetbe any neighbourhood ofthen there existssuch thatNowis not an upper bound forsinceis the least upper bound hence there is a positive numbersuch thatIfthen by the construction aboveEach intervalcontains infinitely many points ofso the proof would be complete ifcould be found such thatAs noted above,for so it will be enough to chooselarge enough so thatandthenThuscontainshencecontains infinitely many members ofandis an accumulation point of

The boundedness of the set is necessary because for exampleis infinite but has no accumulation points.

Add comment

Security code
Refresh