Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0001 362464 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0757 1211856 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0757 1211856 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1803 4110248 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1816 4137616 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1823 4155328 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1826 4186360 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1836 4209080 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1836 4209080 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2510 4910152 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2549 5102304 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2554 5123232 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2687 5387472 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2687 5387728 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

The Weierstrass M - Test

Weierstrass's M – test provides a way to prove uniform convergence for the sum of a sequence.

Letbe a sequence of functions on a setand suppose that there is a sequence of positive termssuch that

  1. forand all

  2. is convergent

    Then the seriesis uniformly convergent on

    Proof: Note that by assumption 1 and 2,is convergent for eachby the comparison test. henceis convergent for eachby the absolute convergence test and so the sum functionexists for eachWe note the partial sum functions by

    Then for

    by the triangle inequality

    by assumption 1

    By assumption 2,asso uniform convergence follows..

    Example: Prove thatconverges uniformly onfor

    andfor

    so that assumption 1 above is satisfied with

    for

    so that assumption 2 is satisfied and the sum converges uniformly on