Proof of Integral Identity for Dot Product of Normal With Curl of a Vector Over a Surface

Theorem
If  
\[\mathbf{A}\]
  is a differentiable vector field defined on a volume  
\[V\]
  with surface  
\[S\]
  and  
\[\mathbf{H} = \mathbf{\nabla} \times \mathbf{A}\]
  then  
\[\int \int_S \mathbf{H} \cdot \mathbf{n} dS=0\]

Proof
Apply the Divergence Theorem to  
\[\mathbf{H}\]
.
\[\int \int_S \mathbf{H} \cdot \mathbf{n} dS = \int \int \int_V \mathbf{\nabla} \cdot \mathbf{H} dV\]

For any twice differentiable vector field  
\[\mathbf{F}\]
,  
\[\mathbf{\nabla} \cdot ( \mathbf{\nabla} \times \mathbf{F}) =0\]
,
\[\int \int_S (\mathbf{\nabla} \times \mathbf{A}) \cdot \mathbf{n} dS = \int \int \int_V \mathbf{\nabla} \cdot (\mathbf{\nabla} \times \mathbf{A}) dV= \int \int \int_V 0 dV =0\]

Hence  
\[\int \int_S \mathbf{H} \cdot \mathbf{n} dS=0\]

Add comment

Security code
Refresh