Proof of Identity for Determinant of Matrix of Metric Coefficients

Theorem
In general coordinates,  
\[diet(g_{ij}) = (\frac{\partial \mathbf{r}}{\partial u_1} \cdot (\frac{\partial \mathbf{r}}{\partial u_2} \times \frac{\partial \mathbf{r}}{\partial u_3})^2\]
  where  
\[g_{ij} = \frac{\partial \mathbf{r}}{\partial u_i} \cdot \frac{\partial \mathbf{r}}{\partial u_j}\]

\[\frac{\partial \mathbf{r}}{\partial u_1} \cdot (\frac{\partial \mathbf{r}}{\partial u_2} \times \frac{\partial \mathbf{r}}{\partial u_3})= \left| \begin{array}{ccc} \frac{\partial x}{\partial u_1} & \frac{\partial y}{\partial u_1} & \frac{\partial z}{\partial u_1} \\ \frac{\partial x}{\partial u_2} & \frac{\partial y}{\partial u_2} & \frac{\partial z}{\partial u_2} \\ \frac{\partial x}{\partial u_3} & \frac{\partial y}{\partial u_3} & \frac{\partial z}{\partial u_3} \end{array} \right| \]

Then
\[\begin{equation} \begin{aligned} (\frac{\partial \mathbf{r}}{\partial u_1} \cdot (\frac{\partial \mathbf{r}}{\partial u_2} \times \frac{\partial \mathbf{r}}{\partial u_3}))^2 &= \left| \begin{array}{ccc} \frac{\partial x}{\partial u_1} & \frac{\partial y}{\partial u_1} & \frac{\partial z}{\partial u_1} \\ \frac{\partial x}{\partial u_2} & \frac{\partial y}{\partial u_2} & \frac{\partial z}{\partial u_2} \\ \frac{\partial x}{\partial u_3} & \frac{\partial y}{\partial u_3} & \frac{\partial z}{\partial u_3} \end{array} \right|\left| \begin{array}{ccc} \frac{\partial x}{\partial u_1} & \frac{\partial y}{\partial u_1} & \frac{\partial z}{\partial u_1} \\ \frac{\partial x}{\partial u_2} & \frac{\partial y}{\partial u_2} & \frac{\partial z}{\partial u_2} \\ \frac{\partial x}{\partial u_3} & \frac{\partial y}{\partial u_3} & \frac{\partial z}{\partial u_3} \end{array} \right| \\ &= \left| \begin{array}{ccc} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g{31} & g_{32} & g_{33} \end{array} \right| \\ &= det(g_{ij} \\ &=g \end{aligned} \end{equation}\]