Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 362488 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0457 1211880 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0457 1211880 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1156 4165272 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1169 4193016 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1177 4210728 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1177 4227736 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1185 4235472 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1185 4235472 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1788 4892120 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.1810 4977352 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.1978 4998280 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2076 5114656 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2076 5114912 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182


Ifis a group,is a subgroup ofandthen

is a left coset ofin
is a right coset ofin

Ifor equivalentlyfor allthenis a normal subgroup ofThe left and right cosets coincide and the set of cosets forms a group with the group operation defined byForunder the operation addition modulo 3, the cosets ofareandIf G is abelian then all subgroups are normal.

if and only ifis an element of H since as H is a subgroup, it must be closed and must contain the identity.

Any two left cosets ofinare either identical or disjoint — i.e., the left cosets form a partition ofsuch that every element ofbelongs to one and only one left coset. In particular the identity is in precisely one coset, and that coset isitself since this is also the only coset that is a subgroup.

The left cosets ofinare the equivalence classes under the equivalence relation ongiven byif and only ifand similarly for right cosets.

All left cosets and all right cosets have the same order (number of elements, or cardinality in the case of an infinite H), equal to the order of H (because H is itself a coset). Furthermore, the number of left cosets is equal to the number of right cosets and is known as the index of H in G, written asLagrange's theorem allows us to compute the index in the case whereandare finite, as per the formula: