Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 362456 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.1487 1211800 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.1487 1211800 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.2197 4127352 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.2212 4154936 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.2222 4172648 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.2224 4203168 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.2235 4225888 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.2235 4225888 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2822 4911664 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2862 5103816 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2867 5124744 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2982 5325712 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2982 5325968 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

The Weierstrass Test

The Weierstrass M – Test gives an often quick and easy method of determining whether of not a series is uniformly convergent.

Theorem (Weierstrass M – Test)

Supposeis a sequence of functions defined on a set E andis a sequence of nonnegative real numbers such thatfor allIf converges then so doesand this also converges uniformly on

Proof: ChooseSinceconverges, there is a real numbersuch that for positive integerswe haveThen for all positive integersandimplies thatfor all x in E, henceconverges uniformly on E.

Example: Show thatconverges uniformly on

so take

The last expression is a geometric series with first termand common ratio

Sincethe geometric series converges, so by comparisonconverges in this example and

converges uniformly on

Example: Show thatwhereodd andeven converges uniformly on

onso take

This is a geometric series with first termand common ratioSincethis series converges soconverges uniformly.