Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 362712 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0515 1212248 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0515 1212248 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1835 4050192 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1848 4078048 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1855 4095760 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1857 4126792 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1867 4149512 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1867 4149512 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2351 4779088 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2377 4880072 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2382 4901000 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2467 4968664 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2467 4968920 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

Alternative Form for Area of Surface Element for Parametrized Surface

Theorem
For a surface  
\[S\]
  defined para metrically with parameters  
\[u,v\]
, we can write  
\[dS=| \sqrt{(\frac{\partial \mathbf{r}}{\partial u}|^2 \frac{\partial \mathbf{r}}{\partial u}|^2 -\frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial u}}du dv\]
<
Proof
\[\begin{equation} \begin{aligned} dS &= | \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}| \\ &=|(\frac{\partial x}{\partial u} \mathbf{i} + \frac{\partial y}{\partial u} \mathbf{j} + \frac{\partial z}{\partial u} \mathbf{k}) \times (\frac{\partial x}{\partial v} \mathbf{i} + \frac{\partial y}{\partial v} \mathbf{j} + \frac{\partial z}{\partial v} \mathbf{k})| \\ &= |(\frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial y}{\partial v} \frac{\partial z}{\partial u} ) \mathbf{i} +(\frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial z}{\partial v} \frac{\partial x}{\partial u} ) \mathbf{j} +(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} ) \mathbf{k} | \\ &= \sqrt{(\frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial y}{\partial v} \frac{\partial z}{\partial u} )^2 + (\frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial z}{\partial v} \frac{\partial x}{\partial u} ) ^2 + (\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} )^2 } \\ &= \sqrt{ ((\frac{\partial x}{\partial u})^2 + (\frac{\partial y}{\partial u})^2 + (\frac{\partial z}{\partial u})^2)((\frac{\partial x}{\partial v})^2 + (\frac{\partial y}{\partial v})^2 + (\frac{\partial z}{\partial v})^2) - (\frac{\partial x}{\partial u} \frac{\partial x}{\partial v}+ \frac{\partial y}{\partial u} \frac{\partial y}{\partial v}+ \frac{\partial z}{\partial u} \frac{\partial z}{\partial v})^2 } \\ &= \sqrt{|\frac{\partial \mathbf{r}}{\partial u}|^2 |\frac{\partial \mathbf{r}}{\partial u}|^2 -\frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial u}} \end{aligned} \end{equation}\]