Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 362968 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0478 1212720 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0478 1212720 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1159 4128552 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1173 4156504 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1181 4174216 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1183 4204736 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1193 4227456 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1193 4227456 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1732 4898816 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.1767 5090968 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.1773 5111896 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.1882 5307456 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.1882 5307712 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

Solving an Initial Value Second Order Non Homogeneous Linear Differential Equation With Constant Coefficients

Any constant coefficient non homogeneous linear differential equation with initial or boundary conditions can be solved by finding the complementary solution  
\[y_c\]
  of the homogeneous equation and any solution  
\[y_p\]
  of the non homogeneous equation, then the general solution is  
\[y=y_c+y_p\]
. The solution that then be fitted to the initial or boundary conditions to find the values of the arbitrary constants.
Example: Solve the equation  
\[\ddot{y}+4y=3\]
  with initial conditions  
\[y(\pi)=1, \: \dot{y}(\pi)=1\]
.
The homogeneous equation is  
\[\ddot{y}+4y=0\]
  with solution  
\[y_c=Acos 2t+Bsin 2t\]
.
The non homogeneous equation  
\[\ddot{y}+4y=3\]
  has a solution (found by putting  
\[y=C\]
)  
\[y=\frac{3}{4}\]
.
The general solution is then  
\[y=Acos 2t+Bsin2t + \frac{3}{4}\]
.
\[y(\pi)=1 \rightarrow A+ \frac{3}{4} =1 \rightarrow A= 1-\frac{3}{4}= \frac{1}{4}\]

\[\dot{y}(\pi)=2 \rightarrow 2B =2 \rightarrow B= 1\]

Then  
\[y=\frac{1}{4}cos2t+sin 2t+ \frac{3}{4}\]
.