If a square matrix
\[A\]
  has a left inverse  \[L\]
  so that  \[LA=I\]
  and a right inverse  \[R\]
  so that  \[AR=I\]
  where  \[I\]
  is the identity matrix then  \[L=R\]
.Proof
Let
\[L\]
  be the left inverse of  \[A\]
  so that  \[LA=I\]
.Composing on the right with
\[A^{-1}\]
  gives  \[LAA^{-1}=IA^{-1} \rightarrow LI =A^{-1} \rightarrow L=A^{-1}\]
.Let
\[R\]
  be the right inverse of  \[A\]
  so that  \[AR=I\]
.Composing on the left with
\[A^{-1}\]
  gives  \[A^{-1}AR=A^{-1} I \rightarrow IR =A^{-1} \rightarrow R=A^{-1}\]
.