Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 362840 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0522 1212536 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0522 1212536 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1190 4193848 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1203 4221800 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1209 4239512 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1211 4270032 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1221 4292752 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1221 4292752 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1690 4962544 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.1726 5154696 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.1731 5175624 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.1840 5385912 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.1840 5386168 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

Minimum Polynomial of a Matrix That Sends ith Basis Elemts Onto i+1th Element and the nth Element to Zero

Suppose a linear transformation  
\[T\]
  sends standard basis elements onto other standard basis element as follows:
\[T(\mathbf{e}_j) = \left\{ \begin{array}{11} \mathbf{e}_{j+1} & j=0,...,n-1 \\ 0 & j=n \end{array} \right. \]

\[T(\mathbf{e}_1)=\mathbf{e}_2, \: T(\mathbf{e}_2)=\mathbf{e}_3 , \: ..., T(\mathbf{e}_{n-1})=\mathbf{e}_n , \: T(\mathbf{e}_n) =0\]

Hence  
\[T^n(\mathbf{e}_1)=0\]

If  
\[A\]
  is the matrix representing  
\[T\]
  then  
\[A^n(\mathbf{e}_1)=0\]

\[A\]
  satisfies a polynomial of degree  
\[n\]
  but cannot satisfy a polynomial of degree less than  
\[n\]
  since  
\[T^k(\mathbf{e}_1)=\mathbf{e}_{k+1}\]
  for  
\[k < n\]
.
The minimum polynomial is  
\[A^n\]
.