Linear Prograaming Problems and Their Duals

Below are two maximisation problems.
Minimise  
\[O_1=45I+50L+60A\]
  subject to
\[I+2L+4A \geq 6\]

\[3I+3L+2A \geq 3\]

\[I+3L+A \geq 2\]

\[I, \: L, \: A \geq 0\]

The solution which maximises  
\[O_1\]
  is  
\[I=0, \: L=1/5, \: A=7/5\]
  and returns  
\[O_1=94\]

Maximise  
\[O_2=6B+3E+2M\]
  subject to
\[B+3E+M \leq 45\]

\[2B+3E+3M \leq 50\]

\[4B+2E+M \geq 60\]

\[B, \: E, \: M \geq 0\]

The solution which maximises  
\[O_2\]
  is  
\[B=13, \: E=0, \: M=8\]
  and returns  
\[O_2=94\]

These two problems are called duals.
Write the first problem as minimise  
\[O_1=\begin{pmatrix}45\\50\\60\end{pmatrix} \cdot \begin{pmatrix}I\\L\\A\end{pmatrix}\]
  subject to  
\[\left( \begin{array}{ccc} 1 & 2 & 4 \\ 3 & 3 & 2 \\ 1 & 3 & 1 \end{array} \right) \begin{pmatrix}I\\L\\A\end{pmatrix} \geq \begin{pmatrix}6\\3\\2\end{pmatrix}\]

\[I, \: L, \: A \geq 0\]

The dual is:
Write the second problem as maximise  
\[O_2=\begin{pmatrix}6\\3\\2\end{pmatrix} \cdot \begin{pmatrix}B\\E\\M\end{pmatrix}\]
  subject to  
\[\left( \begin{array}{ccc} 1 & 3 & 1 \\ 2 & 3 & 3 \\ 4 & 2 & 1 \end{array} \right) \begin{pmatrix}B\\E\\M\end{pmatrix} \leq \begin{pmatrix}45\\50\\60\end{pmatrix}\]

\[B, \: E, \: M \geq 0\]

In general the dual of the minimisation problem
Minimise  
\[O_1= \mathbf{b} \cdot \mathbf{x}\]
  subject to  
\[A \mathbf{x} \geq \mathbf{c}\]

where  
\[\mathbf{x}, \mathbf{b}, \: \mathbf{c}\]
  are n - tuples and  
\[A\]
  is an  
\[n \times n\]
  matrix, and  
\[x_i \geq 0, \: i=1,2,...,n\]

is the problem
Maximise  
\[O_2= \mathbf{c} \cdot \mathbf{y}\]
  subject to  
\[A^T \mathbf{y} \geq \mathbf{b}\]

where  
\[\mathbf{y}, \mathbf{b}, \: \mathbf{c}\]
  are n - tuples and  
\[A\]
  is the  
\[n \times n\]
  matrix above, and  
\[y_i \geq 0, \: i=1,2,...,n\]

According to The Fundamental Theorem of Linear Programming, if a linear programming problem and its dual have a feasible point,, then they have the same optimal point. If one has no point, then neither does the other.