Sum of Integers Relatively Prime to n

If  
\[d | a, \; d | n\]
  then  
\[d | (n-a), d | n\]
  and vice versa, so  
\[gcd(a,n)=gcd(n-a, n)\]
. Hence
\[\sum_{gcd(a,n)=1} a = \sum_{gcd(n-a, a,n)=1} n-a\]
  (1)
There are  
\[\phi (n)\]
  terms in each summation - those integers  
\[m\]
  for which  
\[gcd(m,n)=1\]
. Hence
\[\sum_{gcd(a,n)=1} a + \sum_{gcd(n-a, a,n)=1} n-a = \sum_{gcd(a,n)=1}n = n\phi (n)\]

Then (1) implies  
\[2 \sum_{gcd(a,n)=1} a =n\phi (n)\]

Hence  
\[\sum_{gcd(a,n)=1} a = \frac{n\phi (n)}{2}\]