Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 363672 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0742 1213592 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0742 1213592 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1472 4194552 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1487 4222136 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1495 4239848 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1497 4270368 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1508 4293088 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1508 4293088 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1992 4974760 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2030 5166912 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2035 5187840 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2155 5388776 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2155 5389032 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182 Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; JCommentsACL has a deprecated constructor in /var/www/astarmathsandphysics/components/com_jcomments/classes/acl.php on line 17 Call Stack: 0.0000 363672 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0742 1213592 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0742 1213592 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1472 4194552 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1487 4222136 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1495 4239848 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1497 4270368 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1508 4293088 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1508 4293088 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1992 4974760 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2030 5166912 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2035 5187840 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.3586 13815808 13. JEventDispatcher->trigger() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:199 0.3588 13816208 14. plgContentJComments->update() /var/www/astarmathsandphysics/libraries/joomla/event/dispatcher.php:160 0.3588 13816208 15. plgContentJComments->onContentAfterDisplay() /var/www/astarmathsandphysics/libraries/joomla/event/event.php:70 0.3590 13824456 16. plgContentJComments->onAfterDisplayContent() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:339 0.3593 13826192 17. JComments::show() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:282 0.3600 13859240 18. JCommentsFactory::getACL() /var/www/astarmathsandphysics/components/com_jcomments/jcomments.php:188 0.3600 13859640 19. spl_autoload_call() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274 0.3601 13859720 20. JLoader::load() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274

Russell's Paradox

Russells Paradox is a problem in set theory. Suppose we have a statement about some elementsof a setThis statement will be true for some values of x and false for others. It is tempting to think that we could form the set of all values offor which the statement is true. In other words, it is tempting to think that the expression

should be accepted as a definition of a set. This can lead to a contradiction.

Suppose that all expressions of the type displayed above name sets. Consider the following definition of a set

According to this definition, an objectwill be an element ofif and only ifBut now suppose we ask whether or not is an element of itself. Plugging inforin the definition ofwe come to the conclusion thatif and only ifThis is obviously impossible and we have a contradiction.
To avoid the paradox, mathematicians use a restricted definition of a set. Ifis a set, we define

In this definition, only elements ofare considered for membership in the set being defined. Among elements ofonly those that make the statement “... x ...” come out true are elements of the set. Obviouslycannot be the Universal set since we would have Russell's Paradox again so that Russell's Paradox can be thought of as a proof by contradiction that there can be no set that contains absolutely everything.

Russell's Paradox also explains why there is a restriction on intersections of families of sets. Ifis a set whose elements are sets, thenis the intersection of all of the sets inThus, for anyif and only ifbut ifthen the statementwould be true no matter what x is, and thereforewould be a set containing everything. Since Russell's Paradox shows that there can be no such set, it follows thatis not a set. For this reason, there must be at least one set in the intersection. If U is a set and F is a family of sets, thenis the intersection ofand all of the elements ofIn other words,

Add comment

Security code
Refresh