Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0001 362720 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0713 1212256 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0713 1212256 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1457 4127872 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1470 4161280 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1477 4178992 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1479 4209512 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1489 4232232 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1489 4232232 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2217 4910040 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2252 5102192 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2259 5123120 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2365 5320392 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2366 5320648 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

Proof of Identity for Differences of Cross Products of Vectors With Curls

Theorem
If  {jatex options:inline}\mathbf{v}{/jatex}  and  {jatex options:inline}\mathbf{w}{/jatex}  are vectors then  {jatex options:inline}\mathbf{v} \times (\mathbf{\nabla} \times \mathbf{w}) - (\mathbf{w} \times \mathbf{\nabla}) \times \mathbf{v} = \mathbf{v} (\mathbf{\nabla} \cdot \mathbf{w}) - (\mathbf{v} \cdot \mathbf{\nabla}) \mathbf{w}{/jatex}
Proof
Let  {jatex options:inline}\mathbf{v}=v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} {/jatex}  and  {jatex options:inline}\mathbf{w}=w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k} {/jatex}
{jatex options:inline}\begin{equation} \begin{aligned} \mathbf{v} \times (\mathbf{\nabla} \times \mathbf{w}) - (\mathbf{w} \times \mathbf{\nabla}) \times \mathbf{v} &= (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3) \times ((\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}) \times (w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}) \\ &- ((v_1 \mathbf{i} + v_2 \mathbf{j} + v_3) \times (\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k})) \times (w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}) \\ &= (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3) \times ((\frac{\partial w_3}{\partial y} - \frac{\partial w_2}{\partial z}) \mathbf{i} + (\frac{\partial w_1}{\partial z} - \frac{\partial w_3}{\partial x}) \mathbf{j} + (\frac{\partial w_2}{\partial x} - \frac{\partial w_1}{\partial y}) \mathbf{k} ) \\ &- ((v_2 \frac{\partial}{\partial z} - v_3 \frac{\partial}{\partial y}) \mathbf{i} + (v_3 \frac{\partial}{\partial x} - v_1 \frac{\partial }{\partial z}) \mathbf{j} + (v_1 \frac{\partial }{\partial y} - v_2 \frac{\partial }{\partial x}) \mathbf{k} ) \times(w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}) \\ &= (v_2 (\frac{\partial w_2}{\partial x} - \frac{\partial w_1}{\partial y}) - v_3 (\frac{\partial w_1}{\partial z} - \frac{\partial w_3}{\partial x})) \mathbf{i} \\ &+ (v_3 (\frac{\partial w_3}{\partial y} - \frac{\partial w_2}{\partial z}) -v_1 (\frac{\partial w_2}{\partial x} - \frac{\partial w_1}{\partial y})) \mathbf{j} \\ &+ (v_1 (\frac{\partial w_1}{\partial z} - \frac{\partial w_3}{\partial x}) -v_2 (\frac{\partial w_3}{\partial y} - \frac{\partial w_2}{\partial z}) ) \mathbf{k} \\ &- ((v_3 \frac{\partial w_3}{\partial x} - v_1 \frac{\partial w_3}{\partial z}) - (v_1 \frac{\partial w_2}{\partial y} - v_2 \frac{\partial w_2}{\partial x})) \mathbf{i} \\ &- ((v_1 \frac{\partial w_1}{\partial y} - v_2 \frac{\partial w_1}{\partial x}) - (v_2 \frac{\partial w_3}{\partial z} - v_3 \frac{\partial w_3}{\partial y})) \mathbf{j} \\ &- ((v_2 \frac{\partial w_2}{\partial z} - v_3 \frac{\partial w_2}{\partial y}) - (v_3 \frac{\partial w_1}{\partial x} - v_1 \frac{\partial w_1}{\partial z})) \mathbf{k} \\ &= v_1 (\frac{\partial w_1}{\partial x} \mathbf{i} + \frac{\partial w_2}{\partial y} \mathbf{j} + \frac{\partial w_3}{\partial z} \mathbf{k} ) \\ &+ v_2 (\frac{\partial w_1}{\partial x} \mathbf{i} + \frac{\partial w_2}{\partial y} \mathbf{j} + \frac{\partial w_3}{\partial z} \mathbf{k} ) \\ &+ v_3 (\frac{\partial w_1}{\partial x} \mathbf{i} + \frac{\partial w_2}{\partial y} \mathbf{j} + \frac{\partial w_3}{\partial z} \mathbf{k} ) \\ &- v_1 \frac{\partial}{\partial x} (w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}) \\ &- v_2 \frac{\partial}{\partial x} (w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}) \\ &- v_3 \frac{\partial}{\partial x} (w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}) \\ &= \mathbf{v} (\mathbf{\nabla} \cdot \mathbf{w}) - (\mathbf{v} \cdot \mathbf{\nabla}) \mathbf{w} \end{aligned} \end{equation}{/jatex}