\[\mathbf{\nabla} o = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} d \mathbf{S} o\]
  where  \[\delta S\]
  is the surface of the region  \[\delta V\]
  defines an operator, where  \[o\]
  is ordinary multiplication, dot or cross product.If
\[o\]
  is ordinary multiplication then the operator acts on a scalar field.\[\begin{equation} \begin{aligned} \mathbf{\nabla} o \phi &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int{\delta S} d \mathbf{S} o \phi \\ &=  lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \phi o dS \end{aligned} \end{equation}\]
which is equivalent to
\[\mathbf{\nabla} \phi = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \phi dS\]
If
\[o\]
  a dot product then the operator acts on a vector field.\[\begin{equation} \begin{aligned} \mathbf{\nabla} o \mathbf{F} &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int{\delta S} d \mathbf{S} o \mathbf{F} \\ &=  lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n}  \cdot \mathbf{F} dS \end{aligned} \end{equation}\]
which is equivalent to
\[\mathbf{\nabla} \cdot \mathbf{F} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \cdot \mathbf{F} dS\]
If
\[o\]
  a cross product then the operator acts on a vector field.\[\begin{equation} \begin{aligned} \mathbf{\nabla} o \mathbf{F} &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int{\delta S} d \mathbf{S} o \mathbf{F} \\ &=  lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n}  \times \mathbf{F} dS \end{aligned} \end{equation}\]
which is equivalent to
\[\mathbf{\nabla} \times \mathbf{F} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \times \mathbf{F} dS\]