Definition of an Operator

The equation  
\[\mathbf{\nabla} o = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} d \mathbf{S} o\]
  where  
\[\delta S\]
  is the surface of the region  
\[\delta V\]
  defines an operator, where  
\[o\]
  is ordinary multiplication, dot or cross product.
If  
\[o\]
  is ordinary multiplication then the operator acts on a scalar field.
\[\begin{equation} \begin{aligned} \mathbf{\nabla} o \phi &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int{\delta S} d \mathbf{S} o \phi \\ &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \phi o dS \end{aligned} \end{equation}\]

which is equivalent to  
\[\mathbf{\nabla} \phi = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \phi dS\]

If  
\[o\]
  a dot product then the operator acts on a vector field.
\[\begin{equation} \begin{aligned} \mathbf{\nabla} o \mathbf{F} &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int{\delta S} d \mathbf{S} o \mathbf{F} \\ &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \cdot \mathbf{F} dS \end{aligned} \end{equation}\]

which is equivalent to  
\[\mathbf{\nabla} \cdot \mathbf{F} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \cdot \mathbf{F} dS\]

If  
\[o\]
  a cross product then the operator acts on a vector field.
\[\begin{equation} \begin{aligned} \mathbf{\nabla} o \mathbf{F} &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int{\delta S} d \mathbf{S} o \mathbf{F} \\ &= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \times \mathbf{F} dS \end{aligned} \end{equation}\]

which is equivalent to  
\[\mathbf{\nabla} \times \mathbf{F} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{\delta S} \mathbf{n} \times \mathbf{F} dS\]