Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0001 362592 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0881 1212032 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0881 1212032 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.2269 4193152 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.2283 4226464 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.2292 4244176 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.2294 4274696 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.2304 4297416 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.2304 4297416 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2804 4973560 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2842 5165712 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2847 5186640 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2965 5382120 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2965 5382376 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

The Curl of a Vector as a Sum of Cross Products

The curl pf the vector  
\[\mathbf{v}=v_1 \mathbf{i} + v_2 \mathbf{j} + v_2 \mathbf{k}\]
  where each of  
\[v_1, \: v_2 \, \: v_3 \]
  are functions of  
\[x, \; y, \; \\]
  is
\[ (\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+ \frac{\partial}{\partial k} \mathbf{k}) \times (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}) = (\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z}) \mathbf{i} +( \frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x}) \mathbf{i} + (\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}) \mathbf{k}\]

We can write this is matrix form as
\[ \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} &\frac{\partial }{\partial z} \\ v_1 & v_2 & v_3 \end{array} \right|\]

We can also write
\[- \frac{\partial v_3}{\partial x} \mathbf{j} + \frac{\partial v_2}{\partial x} \mathbf{k} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ \frac{\partial v_1}{\partial x} & \frac{\partial v_2}{\partial x} & \frac{\partial v_3}{\partial x} \end{array} \right| = \mathbf{i} \times \frac{\partial \mathbf{v}}{\partial x}\]

\[\frac{\partial v_3}{\partial y}\mathbf{i} - \frac{\partial v_1}{\partial y} \mathbf{k} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 0 \\ \frac{\partial v_1}{\partial y} & \frac{\partial v_2}{\partial y} & \frac{\partial v_3}{\partial y} \end{array} \right| = \mathbf{j} \times \frac{\partial \mathbf{v}}{\partial y}\]

\[-\frac{\partial v_2}{\partial z} \mathbf{i} + \frac{\partial v_1}{\partial z} \mathbf{j} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & 1 \\ \frac{\partial v_1}{\partial z} & \frac{\partial v_2}{\partial z} & \frac{\partial v_3}{\partial z} \end{array} \right| = \mathbf{k} \times \frac{\partial \mathbf{v}}{\partial z}\]

\[\mathbf{\nabla} \times \mathbf{v} = \mathbf{i} \times \frac{\partial \mathbf{v}}{\partial x} + \mathbf{j} \times \frac{\partial \mathbf{v}}{\partial y} + \mathbf{k} \times \frac{\partial \mathbf{v}}{\partial z}\]