Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0001 362712 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0481 1213704 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0481 1213704 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1296 4134952 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1311 4168296 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1320 4186008 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1322 4216528 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1332 4239248 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1332 4239248 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1916 4910864 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.1953 5103016 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.1959 5123944 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2070 5334272 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2071 5334528 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

Equivalence Of Second Differential of a 0 - Form and curl grad f

Theorem
The statement that for a 0 -form  
\[\omega^0 , \: d (d \omega^0) =0\]
  is equivalent to the statement that for a function  
\[f, \: \mathbf{\nabla} \times (\mathbf{\nabla} f)=0\]
  where  
\[\omega^0 \: f\]
  are both twice differentiable.
Proof
Let  
\[\omega^0 =f(x_1,x_2,x_3)\]

Then
\[\begin{equation} \begin{aligned} d(d \omega^) &= (\frac{\partial^2 d}{\partial x_2 \partial x_2} - \frac{\partial^2 d}{\partial x_1 \partial x_1}) dx_1 \wedge dx_2 + (\frac{\partial^2 d}{\partial x_3 \partial x_1} - \frac{\partial^2 d}{\partial x_1 \partial x_3}) dx_3 \wedge dx_1 \\ &+ (\frac{\partial^2 d}{\partial x_2 \partial x_3} - \frac{\partial^2 d}{\partial x_3 \partial x_2}) dx_2 \wedge dx_3 \\ &=0 \end{aligned} \end{equation}\]

On the other hand,
\[\begin{equation} \begin{aligned} \mathbf{\nabla} \times (\mathbf{\nabla} f) &= (\frac{\partial}{\partial x_1}, (\frac{\partial}{\partial x_2},(\frac{\partial}{\partial x_3}) \times (\frac{\partial f}{\partial x_1}, (\frac{\partial f}{\partial x_2 \partial x_3}) \\ &=(\frac{\partial^2 f}{\partial x_2 \partial x_3}- \frac{\partial^2 f}{\partial x_3 \partial x_2} , \frac{\partial^2 f}{\partial x_3 \partial x_1}- \frac{\partial^2 f}{\partial x_1 \partial x_3}, \frac{\partial^2 f}{\partial x_1 \partial x_2}- \frac{\partial^2 f}{\partial x_2 \partial x_1} )\\ &=0 \end{aligned} \end{equation}\]

The components of  
\[\mathbf{\nabla} \times (\mathbf{\nabla} f)\]
  are the component functions of  
\[d ( d \omega^0 )\]
. The Theorem is proved.