Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0001 362720 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0824 1212256 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0824 1212256 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.4452 4193408 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.4466 4226816 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.4473 4244528 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.4475 4275048 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.4485 4297768 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.4486 4297768 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.5003 4968888 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.5039 5161040 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.5045 5181968 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.5158 5376648 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.5159 5376904 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

Equivalence of Second Differential of a 1 Form and div curl of a Vector

Theorem
Consider a vector field  
\[\mathbf{f}=(f_1,f_2,f_3) \]

The statement that for a 1 -form  
\[\omega^1=f_1 dx_1 +f_2 dx_2 +f_3 dx_3 , \: d (d \omega^1) =0\]
  is equivalent to the statement  
\[\mathbf{\nabla} \cdot (\mathbf{\nabla} \times \mathbf{f})=0\]
  where  
\[\omega^0 \: f\]
  are both twice differentiable.
Proof
\[ \begin{equation} \begin{aligned} d(d \omega^1) &= \sum^3_{i,j,k=1} \frac{\partial f_i}{\partial x_j \partial x_k} \\ &= (\frac{\partial^2 f_3}{ \partial x_1 \partial x_2}- \frac{\partial^2 f_2}{\partial x_1 \partial x_3}+ \frac{\partial^2 f_1}{\partial x_2 \partial x_3}- \frac{\partial^2 f_3}{\partial x_2 \partial x_1}+ \frac{\partial^2 f_2}{\partial x_3 \partial x_1}- \frac{\partial^2 f_1}{\partial x_3 \partial x_2})dx_1 \wedge dx_2 \wedge dx_3 \\ &=0 \end{aligned} \end{equation} \]

On the other hand
\[\mathbf{\nabla} \cdot (\mathbf{\nabla} \times \mathbf{f})= \frac{f_3}{\partial x_1 \partial x_2}- \frac{f_3}{\partial x_2 \partial x_1}+ \frac{f_1}{\partial x_2 \partial x_3}- \frac{f_1}{\partial x_3 \partial x_2}+ \frac{f_2}{\partial x_3 \partial x_1}- \frac{f_2}{\partial x_1 \partial x_3}=0 \]