Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 362712 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0529 1212280 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0529 1212280 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1196 4193464 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1209 4221320 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1216 4239032 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1218 4269552 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1228 4292272 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1228 4292272 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1784 4970096 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.1818 5162248 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.1824 5183176 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.1936 5396080 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.1936 5396336 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182

Position, Velocity and Acceleration in Cartesian and Cylindrical Coordinates

In Cartesian coordinates the position vector of a particle is  
\[\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}\]
>br> The velocity is then  
\[\mathbf{v} = \frac{\partial \mathbf{r}}{\partial t} = \frac{\partial x}{\partial t} \mathbf{i} + \frac{\partial y}{\partial t} \mathbf{j} + \frac{\partial z}{\partial t} \mathbf{k}\]
>br> and the acceleration is given by  
\[\mathbf{a} = \frac{\partial \mathbf{v}}{\partial t}= \frac{\partial^2 \mathbf{r}}{\partial t^2} = \frac{\partial^2 x}{\partial t^2} \mathbf{i} + \frac{\partial^2 y}{\partial t^2} \mathbf{j} + \frac{\partial^2 z}{\partial t^2} \mathbf{k}\]
>br> In cylindrical polar coordinates the unit vectors are
\[\mathbf{i} = cos \theta \mathbf{e_r} - sin \theta \mathbf{e_{\theta}}\]

\[\mathbf{j} = sin \theta \mathbf{e_r} + cos \theta \mathbf{e_{\theta}}\]

\[\mathbf{e_z} = \mathbf{k}\]

and  
\[x= r cos \theta , \; y= r sin \theta , z=z\]

Hence
\[\begin{equation} \begin{aligned} \mathbf{r} &= x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \\ &= r cos \theta (cos \theta \mathbf{e_r} - sin \theta \mathbf{e_{\theta}}) + r sin \theta ( sin \theta \mathbf{e_r} + cos \theta \mathbf{e_{\theta}}) + z \mathbf{e_z} \\ &- = r \mathbf{e_{\theta} } + z \mathbf{e_z}\end{aligned} \end{equation}\]
>br>
\[\begin{equation} \begin{aligned} \mathbf{v} &= \frac{d x}{d t} \mathbf{i} + \frac{d y}{d t} \mathbf{j} + \frac{d z}{d t} \mathbf{k} \\ &= \frac{d}{dt}( r cos \theta) \mathbf{i} + \frac{d}{dt}( r sin \theta) \mathbf{j} + \frac{dz}{dt} \mathbf{e_z} \\ &= \frac{dr}{dt} cos \theta \mathbf{i} - r sin \theta \frac{d \theta}{dt} \mathbf{i} + \frac{dr}{dt} sin \theta \mathbf{j} + r cos \theta \frac{d \theta}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{e_z} \\ &= \frac{dr}{dt}(cos \theta \mathbf{i} + sin \theta \mathbf{j}) + \frac{d \theta}{dt} (- r sin \theta) \mathbf{i} + r cos \theta \mathbf{j}) + \frac{dz}{dt} \mathbf{e_z} \\ &= \frac{dr}{dt}\mathbf{e_r} + r \frac{d \theta}{dt} \mathbf{e_{\theta}} + \frac{dz}{dt} \mathbf{e_z} \end{aligned} \end{equation}\]
>br>
\[\begin{equation} \begin{aligned} \mathbf{a} &= \frac{d \mathbf{v}}{dt} \\ &= \frac{d}{dt} (\frac{dr}{dt}(cos \theta \mathbf{i} + sin \theta \mathbf{j}) + \frac{d \theta}{dt} (- r sin \theta) \mathbf{i} + r cos \theta \mathbf{j}) + \frac{dz}{dt} \mathbf{e_z}) \\ &= \frac{d^2 r}{dt^2}((cos \theta \mathbf{i} + sin \theta \mathbf{j}) + \frac{dr}{dt} \frac{d \theta}{dt} (-sin \theta \mathbf{i} + cos \theta \mathbf{j}) \\ &+ \frac{d^2 \theta}{dt^2} (- r sin \theta \mathbf{i} + r cos \theta \mathbf{j}) + (\frac{d \theta}{dt})^2 (- r cos \theta \mathbf{i} -r sin \theta \mathbf{j}) \\ &= \frac{d^2 r}{dt^2} \mathbf{e_r} + 2 \frac{dr}{dt} \frac{d \theta}{dt} \mathbf{e_{\theta}} + \frac{d^2 \theta}{dt^2} r \mathbf{e_{\theta}} - r(\frac{d \theta}{dt})^2 \mathbf{e_{\theta}} + \frac{d^2 z}{dt^2} \mathbf{e_z} \\ &= (\frac{d^2 r}{dt^2} - r (\frac{d \theta}{dt})^2 ) \mathbf{e_r} + (r \frac{d^2 \theta}{dt^2} +2 \frac{dr}{dt} \frac{d \theta}{dt} ) \mathbf{e_{\theta}} + \frac{d^2z}{dt^2} \mathbf{e_z} \end{aligned} \end{equation}\]