Two Elementary Set Theory Proofs

\[(A \cap B)'\]
 : means 'not in both A and B' -  
\[A'\]
  means 'not in A).
Theorem
\[(A \cap B)'=A' \cup B'\]

Proof
If  
\[x \notin (A \cap B)\]
  then  
\[x \notin A\]
  or  
\[x \notin B\]
  hence  
\[x \in A'\]
  or  
\[x \in B'\]
  so  
\[x \in A' \cup B'\]
.
Conversely if  
\[x \notin A' \cup B'\]
  then  
\[x \notin A'\]
  or  
\[x \notin B'\]
  so  
\[x \in (A \cap B) \rightarrow x \notin (A \cap B)'\]

Theorem
\[(A \cup B)'=A' \cap B'\]

Proof
If  
\[x \notin (A \cup B)\]
  then  
\[x \notin A\]
  and  
\[x \notin B\]
  hence  
\[x \in A'\]
  and  
\[x \in B'\]
  so  
\[x \in A' \cap B'\]
.
Conversely if  
\[x \notin \notin A' \cup B'\]
  then  
\[x \notin A; \rightarrow x \in A\]
  and  
\[x \notin B' \rightarrow x \in B\]
  so  
\[x \notin (A \cup B)'\]

Add comment

Security code
Refresh