Call Us 07766496223
Theory
If  
\[a | c, \; b | c \]
  with the greatest common divisor of  
\[a, \; b\]
  equal to 1, then  
\[ab | c\]
.
Proof
\[a | c \rightarrow ar=c\]
  for some integer  
\[r\]
.
\[b | c \rightarrow bs=c\]
  for some integer  
\[s\]
.
The greatest common divisor of  
\[a, \; b\]
  is 1, so there exist integers  
\[m,n\]
  such that  
\[am+bn=1\]
.
Multiply through by  
\[c\]
  to get
\[amc+bnc=c\]

Substitute for  
\[c\]
  from above on the left hand side.
\[ambs+bnar =c \rightarrow ab(ms+nr)=c \rightarrow (ab) | c\]