Call Us 07766496223
If  
\[n\]
  is an odd perfect number then it must be off the form  
\[n=p^kp_1^{2k_1}p_2^{2k_2}...p_r^{2k_r}\]
  where each  
\[p_1, \; i=1, \; 2,..., \; r\]
  is a distinct prime greater than 2 and  
\[p \equiv 1 \; (mod \; 4)\]
.
The above result implies that  
\[n \equiv 1 \; (mod \; 4)\]
  because for any  
\[p \equiv 3 \; (mod \; 4)\]
,  
\[p^2=)4c+3)(4c+3)=16c^2+24c+9 \equiv 1 \; (mod \; 4)\]
  and any two numbers equiv to 1 (mod 4), when multiplied together, give a number equal to 1 (mod 4)).