Proof of Euler's Criterion for Quadratic Residues

Theorem (Euler's Criterion)
Let  
\[p\]
  be an odd prime and let  
\[a \neq 0 \; (mod \; p)\]
  be an integer. Then  
\[a\]
  is a quadratic residue of  
\[p\]
  if and only if  
\[a^{\frac{p-1}{2}} \equiv 1 \; (mod \; p)\]
, and is a quadratic non residue of  
\[p\]
  if and only if  
\[a^{\frac{p-1}{2}} \equiv -1 \; (mod \; p)\]
.
Proof
Let  
\[a\]
  be a quadratic non residue of  
\[p\]
  and let  
\[1 \le b \le p-1\]
  be an integer. The linear congruence  
\[bx \equiv a \; (mod \; p)\]
  has a unique solution  
\[1 \le b' \le p-1\]
.  
\[b \neq b'\]
  otherwise  
\[b^2 \equiv 1 \; (mod \; p)\]
  and  
\[a\]
  would be a quadratic residue of  
\[p\]
. It follows that the set  
\[\{ 1, \' 2,..., \; p-1 \}\]
  falls into  
\[\frac{p-1}{2}\]
  disjoint pairs  
\[(b, \; b')\]
  with the property that  
\[bb' \equiv a \; (mod \; p)\]
. Multiplying these pairs together gives
\[(p-1)! \equiv a^{\frac{p-1}{2}} \; (mod \; p)\]
.
From Wilson's Theorem,  
\[(p-1)! \equiv 1 \; (mod \; p)\]
  so  
\[a^{\frac{p-1}{2}} \equiv -1 \; (mod \; p)\]
  for any quadratic non residue  
\[a\]
.
Let  
\[a\]
  be a quadratic residue of  
\[p\]
  so that  
\[x^2 \equiv a \; (mod \; p)\]
  has a solution. In fact it will have two solutions. Lagrange's Theorem guarantees at most two solutions, and if  
\[1 n\le c \le p-1\]
  is a solution then so is  
\[1 n\le p-c \le p-1\]
, since  
\[(p-c)^2=p^2-2pc+c^2 \equiv c^2 \; (mod \; p)\]
.
If we remove  
\[c, \; p-c\]
  from the set  
\[\{ 1, \; 2,..., \; p-1 \}\]
  then as before the remaining  
\[p-3\]
  integers fall into  
\[\frac{p-3}{2}\]
  disjoint pairs  
\[(b, \; b')\]
  with the property that  
\[bb' \equiv a \; (mod \; p)\]
. Then
\[\begin{equation} \begin{aligned} (p-1)! &= 1 \times 2 \times 3 \times ... c \times ... \times (p-c) \times ... \times (p-1) \\ & \equiv a^{\frac{p-3}{2}} c(p-c) \; (mod \; p) \\ & \equiv a^{\frac{p-3}{2}} (-c^2) \; (mod \; p) \\ & \equiv a^{\frac{p-3}{2}} (-a) \; (mod \; p) \\ & \equiv -a^{\frac{p-1}{2}} \; (mod \; p) \end{aligned} \end{equation}\]

Using Wilson's Theorem as before,
\[-1 \equiv -a^{\frac{p-1}{2}} \; (mod \; p) \rightarrow 1 \equiv a^{\frac{p-1}{2}} \; (mod \; p)\]

for any quadratic residue  
\[a\]
.
Suppose now that  
\[a^{\frac{p-1}{2}} \equiv 1 \; (mod \; p) \; 1 \le a \le (p-1)\]
.  
\[a\]
  is either a quadratic residue or a quadratic non residue of  
\[p\]
. If it is a quadratic non residue then  
\[a^{\frac{p-1}{2}} \equiv 1 \; (mod \; p)\]
  and this would imply  
\[1 \equiv -1 \; (mod \; p)\]
  which is a contradiction, so if  
\[a^{\frac{p-1}{2}} \equiv 1 \; (mod \; p) \]
  then  
\[a\]
  is a quadratic residue.

Add comment

Security code
Refresh