Call Us 07766496223
Theorem (The Value of a Finite Continued Fraction)
Let  
\[[ a_1,a_2,...,a_{n-1},a_n ]\]
  be a finite continued fraction. Define the numerators  
\[p_1, \; p_2,..., \; p_{n-1}, \; p_n\]
  and the denominators  
\[q_1, \; q_2,..., \; q_{n-1}, \; q_n\]
  of the convergents by
\[p_1=a_1, \; p_2=a_1a_2+1, \; p_k=a_kp_{k-1}+p_{k-2}, \; 1 \le 3 k \le n\]

\[q_1=1, \; q_2=a_2, \; q_k=a_kq_{k-1}+q_{k-2}, \; 1 \le 3 k \le n\]

Then the value of the finite continued fraction is  
\[\frac{p_n}{q_n}\]
.
Proof
Proof is by induction. Let  
\[P(k)\]
  be the statement that the value of  
\[[ a_1,a_2,...,a_{k-1},a_k ]\]
  is  
\[\frac{p_k}{q_k}\]
, with  
\[p_k, \; q_k\]
  as defined above.
Then  
\[P(1)\]
  is true since  
\[[ a_1 ] = \frac{a_1}{1}= \frac{p_1}{q_1}\]
.
\[[ a_1, a_2 ] =a_1 + \frac{1}{a_2} = \frac{a_1a_2+1}{a_2}= \frac{p_2}{q_2}\]
  so  
\[P(2)\]
  is true.
Suppose then that  
\[P(k)\]
  is true for all integers up to and including  
\[k\]
. Consider  
\[[ a_1,a_2,...,a_{k-1},a_k, a_{k+1} ]\]
. The numerators of the convergents are  
\[p_1, \; p_2,..., \; p_{k-1}, \; p_k, \; p_{k+1} \]
  and the denominators are  
\[q_1, \; q_2,..., \; q_{k-1}, \; q_k, \; q_{k+1} \]
.
By The Second Continued Fraction Identity,
\[[ a_1,a_2,...,a_k,a_{k+1} ]= [ a_1,a_2,...,a_k+\frac{1}{a_{k+1}} ]\]
.
The first  
\[k\]
  numerators of the convergents of this continued fraction are  
\[p_1, \; p_2,..., p_{k-1}, \; p'_k=a_k+\frac{1}{a_{k+1}}p_{k-1}+p_{k-2}\]
.
The first  
\[k\]
  denominators are  
\[q_1, \; q_2,..., q_{k-1}, \; q'_k=a_k+\frac{1}{a_{k+1}}q_{k-1}+q_{k-2}\]
.
The kth convergent is  
\[\frac{p_k}{q_k}\]
.
\[ \begin{equation} \begin{aligned} \left[ a_1,a_2,...,a_k,a_{k+1} \right] &= \frac{p'_k}{q'_k} \\ &= \frac{(a_k+\frac{1}{a_{k+1}})p_{k-1}+p_{k-2}}{(a_k+\frac{1}{a_{k+1}})q_{k-1}+q_{k-2}} \\ &= \frac{a_{k+1}(a_kp_{k-1}+p_{k-2})+p_k}{a_{k+1}(a_kq_{k-1}+q_{k-2})+q_k} \\ &= \frac{a_{k+1}p_k+p_{k-1}}{a_{k+1}q_k+q_{k-1}}\\ &= \frac{p_{k+1}}{q_{k+1}} \end{aligned} \end{equation}\]