When is a Rational Fraction a Convergent of an Infinite Continued Fraction

Theorem (Which Rationals are Convergents of a Continued Fraction?)
If the rational number  
\[\frac{a}{b}\]
  satisfies  
\[\| x- a\frac{a}{b} \| \lt \frac{1}{2b}\]
  then  
\[\frac{a}{b}\]
  is a convergent of the continued fraction representing  
\[x\]
.
Proof
Suppose on the contrary that  
\[\frac{a}{b}\]
  is a rational number in its simplest form satisfying the above inequality and is not a convergent  
\[\frac{p_r}{q_r}\]
  of the continued fraction. Let  
\[r\]
  be the unique integer satisfying  
\[q_r \le b \le q_{r+1}\]
. Using the Condition on Approximation to Infinite Continued Fraction,
\[\| a_r x-p_r \| \le \| bx-a \| = b \| x- \frac{a}{b} \| \lt b(\frac{1}{2b^2}) =\frac{1}{2b}\]

Therefore  
\[q_r \| x - \frac{p_r}{q_r} \| \lt \frac{1}{2b} \rightarrow \| x- \frac{p_r}{q_r} \| \lt \frac{1}{2q_rb}\]
.
The Triangle Inequality gives
\[\| \frac{a}{b} - \frac{p_r}{q_r} \| \le \| x - \frac{p_r}{q_r} \| + \| \frac{a}{b} - x \| \lt \frac{1}{2q_rb}+ \frac{1}{2b^2}\]

On the other hand  
\[\| \frac{a}{b} - \frac{p_r}{q_r} \| = \| \frac{aq_r-bp_r}{bq_r} \| \gt \frac{1}{q_rb}\]
.
since  
\[aq_r-bp_r\]
  is a non zero integer.
Hence  
\[\frac{1}{q_rb} \lt \frac{1}{2q_rb} + \frac{1}{2b^2} \rightarrow q_r \gt b\]
, giving the contradiction and proving the theorem.

Add comment

Security code
Refresh