\[x\]
is both a square and a cube. Then we can write \[x=m^2=n^3\]
. Only numbers of certain forms can be both a square and a cube. The table shows such numbers modulo 7.\[m, \; n\] |
\[m^2\] |
\[n^3\] |
| 0 | \[0 \equiv 0 \; (mod \; 7)\] |
\[0 \equiv 0 \; (mod \; 7)\] |
| 1 | \[1 \equiv 1 \; (mod \; 7)\] |
\[1 \equiv 1 \; (mod \; 7)\] |
| 2 | \[4 \equiv 4 \; (mod \; 7)\] |
\[8 \equiv 1 \; (mod \; 7)\] |
| 3 | \[9 \equiv 2 \; (mod \; 7)\] |
\[27 \equiv 6 \; (mod \; 7)\] |
| 4 | \[16 \equiv 2 \; (mod \; 7)\] |
\[64 \equiv 1 \; (mod \; 7)\] |
| 5 | \[25 \equiv 4 \; (mod \; 7)\] |
\[125 \equiv 6 \; (mod \; 7)\] |
| 6 | \[36 \equiv 1 \; (mod \; 7)\] |
\[216 \equiv 6 \; (mod \; 7)\] |
| 7 | \[49 \equiv 0 \; (mod \; 7)\] |
\[343 \equiv 0 \; (mod \; 7)\] |
| 8 | \[64 \equiv 1 \; (mod \; 7)\] |
\[512 \equiv 1 \; (mod \; 7)\] |
| 9 | \[81 \equiv 4 \; (mod \; 7)\] |
\[729 \equiv 1 \; (mod \; 7)\] |
\[7k\]
or \[7k_1\]
.