Call Us 07766496223
Theorem
If  
\[a^n-1\]
  is primes then  
\[a=1\]
  and  
\[n\]
  is prime.
Proof
Suppose  
\[a^n-1\]
  is prime. Then since
\[a^n-1=(a-1)(a^{p-1}+a^{p-2}+...+a+1\]

we must have  
\[a-1=1 \rightarrow a=2\]
.
Also, if  
\[n\]
  is composite, we can write  
\[n=rs\]
  doe some integers  
\[r, \; s\]
. Then
\[\begin{equation} \begin{aligned} a^n-1 &= a^{rs}-1 \\ &= (a^r-1)(a^{rs-r}+a^{rs-2r}+...+a^r+1) \end{aligned} \end{equation} \]

Hence  
\[a^r-1 =1 \rightarrow r=1\]
  and  
\[n\]
  is prime.