Call Us 07766496223
The number of divisors of  
\[n=p_1^{k_1}p_2^{k_2}...p_r^{k_r}\]
  is written  
\[d(n)\]
  and is equal to  
\[d(n)=d(p_1^{k_1}p_2^{k_2}...p_r^{k_r})=(k_1+1)(k_2+1)...(k_r+1)\]
.
If  
\[n\]
  has eight divisors then the prime powers must be 1-1=0, 2-1=1, 4-1=3, or 8-1=7.
Since  
\[2^7=128 \gt 100\]
  there is no number of the form  
\[p^7 \lt 100\]
. The only forms of a number less than 100 with eight divisors are  
\[p^3r\]
  and  
\[pqr\]
. They are
\[2^3 \times 3=24\]

\[2^3 \times 5=40\]

\[2^3 \times 7=56\]

\[2^3 \times 11=88\]

\[3^3 \times 2=54\]

\[2 \times 3 \times 5=30\]

\[2 \times 3 \times 7=42\]

\[2 \times 3 \times 11=66\]

\[2 \times 3 \times 13=78\]

\[2 \times 5 \times 7=70\]