Call Us 07766496223
The Diophantine equation  
\[x^2+y^2=x^2y^2\]
  has no non trivial integer solutions.
Working modulus  
\[x^2\]
:
\[x^2+y^2 =x^2y^2 \rightarrow y^2 \equiv 0 \; (mod \; x^2)\]

Working modulus  
\[y\]
:
\[x^2+y^2 =x^2y^2 \rightarrow x^2 \equiv 0 \; (mod \; y^2)\]

Hence  
\[x^2 | y^2, \; y^2 | x^2\]
. This means that  
\[x^2=y^2\]
.
Let  
\[x^2=y^2\]
  then  
\[2y^2=y^4 \rightarrow y^2(2-y^2)=0 \rightarrow y=0, \pm \sqrt{2}\]
. Hence there are no non trivial integer solutions.