Call Us 07766496223
Theorem
If  
\[\phi , \: \psi\]
  are twice differentiable functions with domain  
\[V\]
  bounded by a surface  
\[S\]
  then
\[\int \int \int_V (a \phi + b \psi ) dV= a \int \int_S \mathbf{\nabla} \phi \cdot \mathbf{n} dS + b \int \int_S \mathbf{\nabla} \psi \cdot \mathbf{n} dS\]

Where  
\[\mathbf{n}\]
  is the outward normal to  
\[S\]
.
Proof
The Divergence Theorem states  
\[\int \int_S \mathbf{F} \cdot \mathbf{n} dS = \int \int \int_V \mathbf{\nabla} \mathbf{F} dV\]

Let  
\[\mathbf{F} = a \mathbf{\nabla} \phi + b \mathbf{\nabla} \psi\]
  then
\[\begin{equation} \begin{aligned} \int \int_S ( a \mathbf{\nabla} \phi + b \mathbf{\nabla} \psi) \cdot \mathbf{n} dS &= \int \int \int_V \mathbf{\nabla} ( a \mathbf{\nabla} \phi + b \mathbf{\nabla} \psi) dV \\ &= \int \int \int_V (a \nabla^2 \phi + b \nabla^2 \psi) dV \\ &= \int \int_S (a \mathbf{\nabla} \phi + b \mathbf{\nabla} \psi m) \cdot \mathbf{n} dS \\ &= a \int \int_S \mathbf{\nabla} \phi \cdot \mathbf{n} dS + b \int \int_S \mathbf{\nabla} \psi \cdot \mathbf{n} dS \end{aligned} \end{equation}\]