Call Us 07766496223
Theorem
If  
\[S\]
  is a closed surface for a region  
\[V\]
  then  
\[\int \int \int_V \mathbf{\nabla} \cdot \mathbf{n} dV =A\]
  where  
\[\mathbf{n}\]
  is the outward normal and use t 
\[A\]
  is the area of t 
\[S\]

Proof
The Divergence Theorem states
\[ \int \int \int_V ( \mathbf{\nabla} \cdot \mathbf{F}) \: dV = \int \int_S ( \mathbf{F} \cdot \mathbf{n}) \: dS\]

where use t 
\[\mathbf{F}\]
  is a twice differentiable vector field. Substitute t 
\[\mathbf{F} = \mathbf{n}\]
  to get
\[ \int \int \int_V ( \mathbf{\nabla} \cdot \mathbf{n}) \: dV = \int \int_S ( \mathbf{n} \cdot \mathbf{n}) \: dS = \int \int_S dS =A\]