Call Us 07766496223
We can write the curl of a vector,  
\[\mathbf{F}\]
, written  
\[\mathbf{\nabla} \times \mathbf{F}\]
  in terms of a surface integral:  
\[\mathbf{\nabla} \times \mathbf{F}= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{ \delta S} \mathbf{n} \times \mathbf{F} dS\]
, where  
\[\delta S\]
  is the surface of the volume  
\[\delta V\]
 
To show this we use the identity  
\[\int \int \int_{\delta V} \mathbf{\nabla} \times \mathbf{F} dV = \int \int_{\delta S} \mathbf{n} \times \mathbf{F} dS\]

Take the dot product of this identity with  
\[\mathbf{i} , \: \mathbf{j}, \: \mathbf{k}\]
  respectively to give
\[\int \int \int_{\delta V} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{i} dV = \int \int_{\delta S} (\mathbf{n} \times \mathbf{F}) \cdot \mathbf{i} dS\]

\[\int \int \int_{\delta V} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{j} dV = \int \int_{\delta S} (\mathbf{n} \times \mathbf{F}) \cdot \mathbf{j} dS\]

\[\int \int \int_{\delta V} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{k} dV = \int \int_{\delta S} (\mathbf{n} \times \mathbf{F}) \cdot \mathbf{k} dS\]

The Mean Value Theorem for Volumes states  
\[\int \int \int_{\delta V} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{i} dV = \delta V ((\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{i})_{(x_0 , y_0 , z_0 )}\]
  for some point  
\[(x_0 , y_0 , z_0 ) \in \delta V\]

Le  
\[\delta V \rightarrow 0\]
  then  
\[\mathbf{\nabla} \times \mathbf{F}= lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_{ \delta S} \mathbf{n} \times \mathbf{F} dS\]