Call Us 07766496223

Theorem
Let  

\[S\]
  be any closed surface and let  
\[\mathbf{F}\]
  be any vector fields with differentiable components.
Then  
\[\int \int \mathbf{\nabla} \times \mathbf{F} dS=0\]

Proof
Cut the surface into two surfaces  
\[S_1 , \; S_2\]
  with the same boundary  
\[C\]
.
Apply Stoke's Theorem  
\[\oint_C \mathbf{F} \cdot d \mathbf{r} = \int \int_S (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{n} dS\]
  to  
\[S_1\]
  and  
\[S_2\]
  separately. The boundary of each surface traverses  
\[C\]
  in the opposite sense -  
\[C, \: \bar C\]
  being anticlockwise and clockwise respectively.
For  
\[S_1\]
 
\[\oint_C \mathbf{F} \cdot d \mathbf{r} = \int \int_{S_1} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{n} dS_1 \]

For  
\[S_2\]
 
\[\oint_{ \bar C} \mathbf{F} \cdot d \mathbf{r} = \int \int_{S_2} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{n} dS_2 \]

Adding these gives
\[\oint_{ C} \mathbf{F} \cdot d \mathbf{r} + \oint_{ \bar C} \mathbf{F} \cdot d \mathbf{r} = \int \int_{S_1} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{n} dS_1 + \int \int_{S_2} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{n} dS_2 = \int \int_{S} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{n} dS \]

The left hand side is zero since
\[\oint_{ C} \mathbf{F} \cdot d \mathbf{r} =- \oint_{ \bar C} \mathbf{F} \cdot d \mathbf{r} \]

Hence  
\[\int \int \mathbf{\nabla} \times \mathbf{F} dS =0\]