Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; JCommentsACL has a deprecated constructor in /var/www/astarmathsandphysics/components/com_jcomments/classes/acl.php on line 17 Call Stack: 0.0001 360512 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0466 1210712 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0466 1210712 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1125 4043848 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1138 4077160 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1146 4094872 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1146 4111880 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1154 4119616 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1154 4119616 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.1549 4348888 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.1564 4366288 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.1569 4387216 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2617 9478752 13. JEventDispatcher->trigger() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:199 0.2619 9479200 14. plgContentJComments->update() /var/www/astarmathsandphysics/libraries/joomla/event/dispatcher.php:160 0.2619 9479200 15. plgContentJComments->onContentAfterDisplay() /var/www/astarmathsandphysics/libraries/joomla/event/event.php:70 0.2621 9487448 16. plgContentJComments->onAfterDisplayContent() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:339 0.2623 9489144 17. JComments::show() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:282 0.2630 9522424 18. JCommentsFactory::getACL() /var/www/astarmathsandphysics/components/com_jcomments/jcomments.php:188 0.2630 9522824 19. spl_autoload_call() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274 0.2631 9522904 20. JLoader::load() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274

Green's Theorem From Stoke's Theorem

Stoke's Theorem  
\[\oint_C \mathbf{F} \cdot d \mathbf{r} = \int \int_S (\mathbf{\nabla} \times \mathbf{F}) \cdot {n} dS \]
  and Green's Theorem  
\[ \oint_C Pdx +Qdy = \int \int_S (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dx dy \]
  where  
\[P=P(x,y), \; Q=Q(x,y)\]
  (and all derivatives with respect to  
\[z\]
  are zero) are not independent theorems. In fact applying Stoke's Theorem to a vector field in the plane results in Green's Theorem.
To see this take  
\[\mathbf{F} = P(x,y) \mathbf{i} + Q(x,y) \mathbf{j}\]

\[d \mathbf{r} = dx \mathbf{i} + dy \mathbf{j}\]

The left hand side of Stoke's Theorem becomes  
\[\oint_C \mathbf{F} \cdot d \mathbf{r} = \oint_C Pdx +Qdy\]

\[\mathbf{\nabla} \times \mathbf{F} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ P & Q & 0 \end{array} \right| = (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \mathbf{k}\]

Since  
\[\mathbf{n}=\mathbf{k}\]
  the right hand side of Stoke's Theorem becomes
\[ \int \int_S (\mathbf{\nabla} \times \mathbf{F}) \cdot {n} dS =\int \int_S (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \mathbf{k} \cdot \mathbf{k} dS = \int \int_S (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dx dy \]

Add comment

Security code
Refresh