Call Us 07766496223
To solve the equation  
\[\mathbf{\nabla} \cdot \mathbf{F} =r^n\]
  in spherical polar coordinates, use the facet that fore a radial vector field  
\[F=F_r \mathbf{e_r}\]
,  
\[\mathbf{\nabla} \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r ) =r^n\]

Hence  
\[\frac{\partial}{\partial r} (r^2 F_r ) =r^{n+2}\]

Integrate both sides to get
\[r^2 F_r = \frac{r^{n+3}}{n+3}+A\]

Then  
\[F_r = \frac{r^{n+1}}{n+3} + \frac{A}{r^2}\]
  if  
\[n \neq 0\]
  and  
\[F_r = \frac{r^{n+1}}{n+3} \]
if  
\[r=0\]
  is possible, since  
\[\mathbf{\nabla} \cdot \mathbf{F}=0 \rightarrow F_r =\frac{1}{r^2}\]
  using this result.