Call Us 07766496223
Theorem
\[\frac{d}{dt} \int \int \int_{V_t} f dV =\int \int \int_{V_t} \frac{\partial f}{\partial t} dV + \int \int_{S_t} f \mathbf{v} \cdot d \mathbf{S}\]

where  
\[f\]
  is a function of  
\[\mathbf{r}, \:t\]
  defined on a volume of integration  
\[V_t\]
  that varies with time.
Proof
Let  
\[f= \mathbf{\nabla} \cdot \mathbf{F}\]
  then
\[\int \int \int_{V_t} f dV = \int \int \int_{V_t} \mathbf{\nabla} \cdot \mathbf{F} dV =\int \int_{S_t} \mathbf{F} \cdot d \mathbf{S} \]
  (1)
from the Divergence Theorem.
The flux transport theorem for a closed surface  
\[S_t\]
  of a volume  
\[V_t\]
  states
\[\frac{d}{dt} \int \int_{S_t} \mathbf{F} \cdot d \mathbf{S} = \int \int_{S_t} \frac{\partial \mathbf{F}}{\partial t} + (\mathbf{\nabla} \cdot \mathbf{F}) \mathbf{v}) d \mathbf{S}\]
  (2)
Differentiate (1) and substitute (2) to get
\[\begin{equation} \begin{aligned} \frac{d}{dt} \int \int \int_{V_t} f dV &= \frac{d}{dt} \int \int_{S_t} \mathbf{F} \cdot d \mathbf{S} \\ &= \int \int_{S_t} \frac{\partial \mathbf{F}}{\partial t} \cdot d \mathbf{S} + \int \int_{S_t} (\mathbf{\nabla} \cdot \mathbf{F}) \mathbf{v} \cdot d \mathbf{S} \\ &= \int \int \int_{V_t} \mathbf{\nabla} \cdot \frac{\partial \mathbf{F}}{\partial t} dV + \int \int_{S_t} (\mathbf{\nabla} \cdot \mathbf{F}) \mathbf{v} \cdot d \mathbf{S} \\ &= \int \int \int_{V_t} \frac{\partial}{\partial t} (\mathbf{\nabla} \cdot \mathbf{F}) dV + \int \int_{S_t} (\mathbf{\nabla} \cdot \mathbf{F}) \mathbf{v} \cdot d \mathbf{S} \\ &= \int \int \int_{V_t} \frac{\partial f}{\partial t} dV + \int \int_{S_t} f \mathbf{v}) \cdot d \mathbf{S} \end{aligned} \end{equation}\]