Call Us 07766496223
To find  
\[\frac{d}{dx}(sech^{-1}x)\]
 ;et  
\[y=sech^{-1}x\]
  then  
\[sechy=x\]
.
Differentiating implicitly gives  
\[-sechytanhy \frac{dy}{dx}=1 \rightarrow \frac{dy}{dx}=- \frac{1}{sechy tanhy}\]
.
To express  
\[\frac{dy}{dx}\]
  in terms of  
\[x\]
  use  
\[sechy=x,\; tanhy = \sqrt{1-sech^2y} =\sqrt{1-x^2}\]
.
Then  
\[\frac{dy}{dx}=- \frac{1}{x \sqrt{1-x^2}}\]
.