Call Us 07766496223
Theorem
Let  
\[S\]
  be the boundary surface of a volume  
\[V\]
  andlket  
\[\mathbf{n}\]
  be the outward normal. Then
\[V= \int \int_S x \: dy \: dz = \int int_S y \: dx \: dz = \int \int_S z \: dx \: dy = \frac{1}{3} \int \int_S x \: dy \: dz + y \: dx \: dz + z \: dx \: dy\]

Proof
From the divergence theorem  
\[\int \i \int_S (\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} dx \: dy \: dz = \int \int _S F_1 dy \: dz + F_2 \: dx \: dz + F_3 \: dx \: dy\]

If  
\[\mathbf{\nabla} \cdot \mathbf{F}=1\]
  then again from the divergence theorem  
\[\int \int \int_V \mathbf{\nabla} \cdot \mathbf{F} \: dx \: dy \: dz = \int \int \int_V dx \: dy \: dz = \int \int_S F_1 \: dy \: dz + F_2 \; dx \: dz + F_3 \: dy \: dz\]

But  
\[V = \int \int \int_V dx \: dy \: dz\]

Hence  
\[V= \int \int_S F_1 \: dy \: dz + F_2 \; dx \: dz + F_3 \: dy \: dz\]

Take  
\[\mathbf{F} = x \mathbf{i}\]
  then  
\[\mathbf{\nabla} \cdot \mathbf{F} =1\]
  and  
\[V= \int \int_S x \: dy \: dz\]

Take  
\[\mathbf{F} = y \mathbf{j}\]
  then  
\[\mathbf{\nabla} \cdot \mathbf{F} =1\]
  and  
\[V= \int \int_S y \: dx \: dz\]

Take  
\[\mathbf{F} = y \mathbf{i}\]
  then  
\[\mathbf{\nabla} \cdot \mathbf{F} =1\]
  and  
\[V= \int \int_S y \: dx \: dz\]

Hence
\[V= \frac{1}{3} \int \int_S x \: dy \: dz + y \: dx \: dz + z \: dx \: dy\]