First we show they cannot be of the form
\[n = p q\]
 where \[p, q\]
 are distinct primes with \[p \gt q\]
. By the Chinese Remainder Theorem we have \[\mathbb{Z}_{n} = \mathbb{Z}_p \times \mathbb{Z}_q\]
. Then  \[ n - 1 = p q - 1 = q(p - 1) + q - 1\]
.Suppose
\[a\]
 is not a multiple of \[p\]
. Then \[a^{n-1} = (a^{p-1})^q a^{q-1} = a^{q-1} \pmod p\]
 (by Fermat we have \[a^{p-1} = 1 \pmod p$). Then if {jatex options:inline}a\]
 passes the Fermat test, we must have \[a^{q-1} = 1 \pmod p\]
 and hence \[a^d = 1\]
. where \[d = \gcd(p-1,q-1)\]
. Since \[\mathbb{Z}_p^*\]
 is cyclic, there are exactly \[d\]
 choices for \[a\]
 that satisfy \[a^d = 1\]
.Since
\[q\]
 is strictly smaller than \[p\]
. the greatest common divisor of \[p-1\]
 and \[q-1\]
 is at most \[(p-1)/2\]
. Thus at most half the choices for \[a\]
 can fool the Fermat test. For primes \[p,q\]
 used in RSA, \[d\]
 is small with high probability, so the product \[p q\]
 will almost never fool the Fermat test, as mentioned earlier.Next suppose
\[n\]
 is not squarefree, that is \[n = p^k r\]
 for some prime \[p\]
 and \[k\ge 2\]
. Then by the Chinese Remainder Theorem, \[\mathbb{Z}_n = \mathbb{Z}_{p^k} \times \mathbb{Z}_r\]
. Any \[a \in \mathbb{Z}_{p^k}\]
 satisfies \[a^{\phi(p^k)} = 1\]
 by Euler’s Theorem, so if \[a^{n-1} = 1\]
 as well, then we must have \[a^d = 1\]
 where  \[ d = \gcd(n-1, \phi(p^k)) = \gcd(p^k r - 1, p^{k-1}(p-1)) .
Since {jatex options:inline}\mathbb{Z}_{p^k}\]
. is cyclic, exactly Since {jatex options:inline}\mathbb{Z}_{p^k}\]
\[d\]
 elements \[a \in \mathbb{Z}_{p^k}\]
 satisfy \[a^d = 1\]
. As \[p\]
 cannot divide \[p^k r - 1\]
. the largest possible value for \[d\]
 is \[p-1\]
. giving an upper bound of \[(p-1) / (p^{k} - 1) \le 1/4\]
 probability that \[n\]
 will pass the Fermat test.Hence if
\[n\]
 is a Carmichael number, then \[n\]
 is squarefree and is the product of at least three distinct primes.