Best Rational Approximation to an Irrational Number

The irrational number  
\[x\]
  has infinite continued fraction  
\[[ 0,2,4,6, 8, 10 ]\]
, Find the best rational approximation  
\[\frac{a}{b}\]
  to  
\[x\]
  with  
\[b \lt 100\]
.
The first few convergents of the continued fraction are  
\[0, \frac{1}{2}, \; \frac{1}{2 + \frac{1}{4}}= \frac{4}{9}, \; \frac{1}{2 + \frac{1}{4+ \frac{1}{6}}} = \frac{25}{56}, \; \; \frac{1}{2 + \frac{1}{4+ \frac{1}{6+ \frac{1}{8}}}} = \frac{204}{457} \]
.
The convergent  
\[\frac{35}{56}\]
  satisfies  
\[\| x- \frac{25}{56} \| \lt \frac{1}{56 \times 457}\]
.
Suppose there is some better rational approximation  
\[\frac{a}{b}\]
  with denominator less than 100. Then
\[\begin{equation} \begin{aligned} \| \frac{a}{b} - x \| & \gt \| \frac{a}{b} - \frac{25}{56} \| \\ & \gt \| x- \frac{25}{56} \| \\ & \gt \frac{1}{56 \times 100} - \frac{1}{56 \times 457} \\ &= \frac{337}{56 \times 100 \times 457} \\ & \gt \frac{1}{56 \times 457} \end{aligned} \end{equation}\]

so  
\[\frac{25}{56}\]
  is a better approximation than  
\[\frac{a}{b}\]
.

You have no rights to post comments