By Fermat’s Theorem, if
\[n\]
 is prime, then for any \[a\]
 we have \[a^{n-1} = 1 \pmod{n}\]
. This suggests the Fermat test for a prime: pick a random  \[a \in \{1,...,n-1\}\]
 and see if  \[a^{n-1} = 1 \pmod{n}\]
. If not, then  \[n\]
 must be composite.However we may still get equality even when
\[n\]
 is not prime. For example, take  \[n = 561 = 3\times 11\times 17\]
. By the Chinese Remainder Theorem,\[ \mathbb{Z}_{561} = \mathbb{Z}_{3} \times \mathbb{Z}_{11} \times \mathbb{Z}_{17} \]
thus each
\[a \in \mathbb{Z}_{561}^*\]
 corresponds to some\[ (x,y,z) \in \mathbb{Z}_{3}^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{17}^* .\]
By Fermat’s Theorem,
\[x^2 = 1\]
,  \[y^{10} = 1\]
, and  \[z^{16} = 1\]
. Since 2, 10, and 16 all divide 560, this mean s \[(x,y,z)^{560} = (1,1,1)\]
, in other words,  \[a^{560} = 1\]
 for any  \[a \in \mathbb{Z}_{561}^*\]
.Thus no matter what
\[a\]
 we pick,  \[561\]
 always passes the Fermat test despite being composite so long as  \[a\]
 is coprime to  \[n\]
. Such numbers are called Carmichael numbers, and it turns out there are infinitely many of them.If
\[a\]
 is not coprime to  \[n\]
 then the Fermat test fails, but then we can easily recover a factor of  \[n\]
 by computing  \[\gcd(a, n)\]
.