Call Us 07766496223
It can be hard to decide if a given number is a odd prime.
By Fermat’s Theorem, if  
\[n\]
 is prime, then for any 
\[a\]
 we have 
\[a^{n-1} = 1 \pmod{n}\]
. This suggests the Fermat test for a prime: pick a random  
\[a \in \{1,...,n-1\}\]
 and see if  
\[a^{n-1} = 1 \pmod{n}\]
. If not, then  
\[n\]
 must be composite.
However we may still get equality even when  
\[n\]
 is not prime. For example, take  
\[n = 561 = 3\times 11\times 17\]
. By the Chinese Remainder Theorem,
\[ \mathbb{Z}_{561} = \mathbb{Z}_{3} \times \mathbb{Z}_{11} \times \mathbb{Z}_{17} \]

thus each  
\[a \in \mathbb{Z}_{561}^*\]
 corresponds to some
\[ (x,y,z) \in \mathbb{Z}_{3}^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{17}^* .\]

By Fermat’s Theorem,  
\[x^2 = 1\]
,  
\[y^{10} = 1\]
, and  
\[z^{16} = 1\]
. Since 2, 10, and 16 all divide 560, this mean s 
\[(x,y,z)^{560} = (1,1,1)\]
, in other words,  
\[a^{560} = 1\]
 for any  
\[a \in \mathbb{Z}_{561}^*\]
.
Thus no matter what  
\[a\]
 we pick,  
\[561\]
 always passes the Fermat test despite being composite so long as  
\[a\]
 is coprime to  
\[n\]
. Such numbers are called Carmichael numbers, and it turns out there are infinitely many of them.
If  
\[a\]
 is not coprime to  
\[n\]
 then the Fermat test fails, but then we can easily recover a factor of  
\[n\]
 by computing  
\[\gcd(a, n)\]
.