Call Us 07766496223
Theorem
Let  
\[n=p_1^{k_1}...p_r^{k_r}\]
.
All divisors of  
\[n\]
  are of the form  
\[p_1^{s_1}...p_r^{s_r}\]
  where  
\[0 \le s_i \le k_i, \; i=1,2,...,r\]
.
Proof
Every integer of the above form certainly does divide  
\[n\]
  because  
\[n=(p_1^{s_1}...p_r^{s_r})(p_1^{k_1-s_1}...p_r^{k_r-s_r})\]
, where each  
\[s_i, \; k_i-s_i \ge 0\]
, so both of  
\[p_1^{s_1}...p_r^{s_r}, \; p_1^{k_1-s_1}...p_r^{k_r-s_r} \]
  divide  
\[n\]
.
Divisors of  
\[n\]
  with distinct sets of powers are distinct integers. Let  
\[d \gt 1\]
  be any divisor of  
\[n\]
  and let  
\[p\]
  be a prime divisor of  
\[d\]
.  
\[p\]
  divides  
\[d\]
  and  
\[d\]
  divides  
\[n\]
  so  
\[p\]
  divides  
\[n\]
. Hence  
\[p=p_i, \; 1 \e i \le r\]
. It follows that the only primes dividing  
\[d\]
  are  
\[p_i, \; 1 \le i \le r\]
  and we can write  
\[d=p_1^{s_1}...p_r^{s_r}\]
.
In addition  
\[d=p_1^{s_1}...p_r^{s_r}\]
  divides  
\[n=p_1^{k_1}...p_r^{k_r}\]
.  
\[p_1\]
  does not divide  
\[p_2^{k_2}...p_r^{k_r}\]
. The greatest common divisor of  
\[p_1, \; p_2^{k_2}...p_r^{k_r}\]
  is 1.  
\[p_1^{s_1}\]
  divides  
\[n=p_1^{k_1}...p_r^{k_r}\]
  so by Euclid's Lemma for Prime Numbers,  
\[p_1^{s_1}\]
  divides  
\[p_1^{k_1}\]
. Ditto for  
\[p_2, \; p_3,..., \; p_k\]
  proves the theorem.