Call Us 07766496223
Theorem
If  
\[F_n, \; F_m\]
  are terms in the Fibonacci sequence, then  
\[F_n\]
  divides  
\[F_m\]
  if and only if  
\[n\]
  divides  
\[m\]
, .
Proof
Consider the terms  
\[F_n, \; F_{nk}\]
. If  
\[k=1\]
  the result is trivially true. The proof is by induction.
\[P(1)\]
  by the above argument. Let  
\[P(r)\]
  be true for  
\[r=2, \; 3,..., \; k\]
, and prove  
\[P(k+1)\]
.
Use the identity  
\[F{m+n}=F_{m-1}F_n+F_mF_{n+1}\]
.
\[F_{n(k+1)}=F_{nk+n}=F_{nk}F_n+F_{nk}F_{n+1}\]
  (1)
By the induction hypothesis,  
\[F_n\]
  divides  
\[F_{nk}\]
  so  
\[F_n\]
  divides each term on the right hand side of (1).
Conversely, suppose  
\[F_n\]
  divides  
\[F_m\]
. Suppose  
\[m=nq+r, \; 1 \le r \lt n\]
.
\[F_m=F_{nq+r}=F_{nq-1}F_r+F_{nq}F_{r+1}\]

\[F_m, F_{nq}\]
  are both divisible by  
\[F_n\]
, so  
\[F_{nq-1}F_r\]
  must also be. but  
\[r \lt n \rightarrow F_r \lt F_n\]
, so  
\[F_n\]
  divides  
\[F_{nq-1}\]
.
Let  
\[d\]
  be the greatest common factor of  
\[F_n, \; F_{nq-1}\]
  then  
\[d\]
  also divides  
\[F_{nq}\]
  since  
\[F_n\]
  divides  
\[F_{nq}\]
.
But the greatest common factor of consecutive terms in the Fibonacci sequence is 1, so  
\[d=1\]
.