If
\[F_n, \; F_m\]
  are terms in the Fibonacci sequence, then  \[F_n\]
  divides  \[F_m\]
  if and only if  \[n\]
  divides  \[m\]
, .Proof
Consider the terms
\[F_n, \; F_{nk}\]
. If  \[k=1\]
  the result is trivially true. The proof is by induction.\[P(1)\]
  by the above argument. Let  \[P(r)\]
  be true for  \[r=2, \; 3,..., \; k\]
, and prove  \[P(k+1)\]
.Use the identity
\[F{m+n}=F_{m-1}F_n+F_mF_{n+1}\]
.\[F_{n(k+1)}=F_{nk+n}=F_{nk}F_n+F_{nk}F_{n+1}\]
  (1)By the induction hypothesis,
\[F_n\]
  divides  \[F_{nk}\]
  so  \[F_n\]
  divides each term on the right hand side of (1).Conversely, suppose
\[F_n\]
  divides  \[F_m\]
. Suppose  \[m=nq+r, \; 1 \le r \lt n\]
.\[F_m=F_{nq+r}=F_{nq-1}F_r+F_{nq}F_{r+1}\]
\[F_m, F_{nq}\]
  are both divisible by  \[F_n\]
, so  \[F_{nq-1}F_r\]
  must also be. but  \[r \lt n \rightarrow F_r \lt F_n\]
, so  \[F_n\]
  divides  \[F_{nq-1}\]
.Let
\[d\]
  be the greatest common factor of  \[F_n, \; F_{nq-1}\]
  then  \[d\]
  also divides  \[F_{nq}\]
  since  \[F_n\]
  divides  \[F_{nq}\]
.But the greatest common factor of consecutive terms in the Fibonacci sequence is 1, so
\[d=1\]
.