Let
\[a, \; b\]
  be positive integers, and let  \[c, \; d\]
  be any integers. Thena) If
\[a | c\]
  then  \[a | (c+na)\]
  for any integer  \[n\]
.b) If
\[c \neq 0\]
  and  \[a | c\]
  then  \[a \le |c|\]
.c) If
\[a | b\]
  and  \[b | a\]
  then  \[a=b\]
.d) If
\[a | b, \; b | c\]
  then  \[a | c\]
.e) If
\[a | c, \; a | d\]
  then  \[a | (mc+nd)\]
  for any integers  \[m, \; n\]
.Proof
a)
\[a |c\]
  so there is an integer  \[q\]
  such that  \[aq=c\]
. Then  \[c+na=aq+na=a(q+n)=ax\]
  where  \[x=qn\]
  is an integer, so  \[a | (c+na)\]
.b) Let
\[c=aq\]
  as in a) then  \[| c |= | aq |= a | q |\]
  and the result follows since  \[| q | \ge 1\]
  and  \[q\]
  is an integer. This result implies that  \[c\]
  has only a finite number of divisors, since any divisor must be less than or equal to  \[| c |\]
.c) If
\[a | b, \; b | a \]
  then from b)  \[a \le b, \; b \le a\]
. The result follows.d) If
\[a | b, \; b | c \]
  then there are integers  \[s, \; t\]
  such that  \[b=as, \; c=bt\]
. Then  \[c=ast=a(st)\]
  so  \[a | c\]
.e) If
\[a | c, \; a | d \]
  then there are integers  \[s, \; q\]
  such that  \[c=as, \; d=aq\]
. Then  \[mc+nd=mas+naq=a(ms+nq)=ax\]
  where  \[x=ms+nq\]
  is an integer so e) is proved.