For any integers
\[a, \; b, \; b \gt 0\]
, there exist unique integers  \[q, \; r\]
  such that \[a=bq+r, \; 0 \le r \le b\]
 
ProofConsider the set of integers
\[S=\{a-bn /gt 0: n \in \mathbb{Z} \}\]
.\[S\]
  is not empty as  \[b \gt 0 \rightarrow a-bn \gt \]
  if  \[n \lt 0\]
Either
\[0 \in S\]
  and  \[0\]
  is the smallest member of  \[S\]
  or  \[S\]
  is a non empty set of positive integers so by the Well Ordering Principle again,  \[S\]
  has a smallest element. In either case, there exists an integer  \[q\]
  such that \[a-bq=r\]
  is the smallest element of  \[S\]
. Hence there are integers  \[q, \; r\]
  such that  \[a=bq+r, \; \le r\]
.If
\[r \gt b\]
  then  \[r-b \gt 0\]
  so  \[r-b=a-bq-b=a-b(q+1)\]
  and  \[r-b\]
  is a smaller element of  \[S\]
  than  \[r\]
  which contradicts the definition of  \[r\]
  above, so  \[r \lt b\]
.Suppose the now there exist
\[r, \; r'\]
  satisfying\[a=bq+r, 0 \le r \lt b\]
\[a=bq'+r', 0 \le r' \lt b\]
Subtraction gives
\[0=b(q-q')+ r-r' \]
.If
\[q=q'\]
  the  \[r=r'\]
  and the expressions are the same.Suppose then
\[q \neq q'\]
. Assume  \[q \gt q' \rightarrow q-q' \gt 0\]
, then  \[r'-r=b(q-q') \ge b \times 1 =b \]
  contradiction that  \[0 \le r, \; r' \lt b\]
.Therefore
\[b, \; q\]
  are unique.