Call Us 07766496223
Theorem (The Division Algorithm)
For any integers  
\[a, \; b, \; b \gt 0\]
, there exist unique integers  
\[q, \; r\]
  such that 
\[a=bq+r, \; 0 \le r \le b\]
  Proof
Consider the set of integers  
\[S=\{a-bn /gt 0: n \in \mathbb{Z} \}\]
.
\[S\]
  is not empty as  
\[b \gt 0 \rightarrow a-bn \gt \]
  if  
\[n \lt 0\]

Either  
\[0 \in S\]
  and  
\[0\]
  is the smallest member of  
\[S\]
  or  
\[S\]
  is a non empty set of positive integers so by the Well Ordering Principle again,  
\[S\]
  has a smallest element. In either case, there exists an integer  
\[q\]
  such that 
\[a-bq=r\]
  is the smallest element of  
\[S\]
. Hence there are integers  
\[q, \; r\]
  such that  
\[a=bq+r, \; \le r\]
.
If  
\[r \gt b\]
  then  
\[r-b \gt 0\]
  so  
\[r-b=a-bq-b=a-b(q+1)\]
  and  
\[r-b\]
  is a smaller element of  
\[S\]
  than  
\[r\]
  which contradicts the definition of  
\[r\]
  above, so  
\[r \lt b\]
.
Suppose the now there exist  
\[r, \; r'\]
  satisfying
\[a=bq+r, 0 \le r \lt b\]

\[a=bq'+r', 0 \le r' \lt b\]

Subtraction gives  
\[0=b(q-q')+ r-r' \]
.
If  
\[q=q'\]
  the  
\[r=r'\]
  and the expressions are the same.
Suppose then  
\[q \neq q'\]
. Assume  
\[q \gt q' \rightarrow q-q' \gt 0\]
, then  
\[r'-r=b(q-q') \ge b \times 1 =b \]
  contradiction that  
\[0 \le r, \; r' \lt b\]
.
Therefore  
\[b, \; q\]
  are unique.