Proof Thnat Order of an Integer Modulo p Divides p-1

Theorem
If  
\[a\]
  has order  
\[c\]
  modulo  
\[p \gt 3\]
  where  
\[p\]
  is a prime, and  
\[a^k \gt 1 \; (mod \; p)\]
  then  
\[c | k\]
. In particular  
\[c | (p-1)\]
.
Proof
By the Division Algorithm we can write  
\[k=qc+r, \; 0 \le r \lt c\]
.
\[a^k = a^{qc+r} =(a^c)^q \times a^r \equiv 1^q \times a^r \; (mod \; p) \equiv a^r \; (mod \; p)\]

\[a^k \equiv a^r \equiv 1 \; (mod \; p)\]

Therefore  
\[r=0\]
  otherwise the order of  
\[a\]
  would be less than  
\[c\]
. Hence  
\[c | k\]
.
Fermat's Little Theorem gives  
\[a^{p-1} \equiv 1 \; (mod \; p)\]
   
\[c | (p-1)\]
.

Add comment

Security code
Refresh